

DEFENCE INNOVATION ORGANISATION (Under Aegis of Department of Defence Production)

Ministry of Defence, Government of India New Delhi -110002

Summary of Defence India Start-up Challenge-X (DISC X)

Problem Statements

S. No.	Name of Agency	Number of Problem Statements
1	Indian Army	3
2	Indian Navy	3
3	Indian Air Force	12
4	ICG	7
5	AVNL	3
6		3
7	HAL	4
8	IOL	3
9	BEL	6
10	MDL	8
11	BDL	2
12	GRSE	1
13	BEML	2
14	Defence Space Agency	2
15	BRO	4
Total		63

DISC-X Problem Statement

Problem Statement – 1 (Army) 4
Problem Statement – 2 (Army)
Problem Statement – 3 (Army)
Problem Statement – 4 (Indian Navy)7
Problem Statement – 5 (Indian Navy)
Problem Statement – 6 (Indian Navy)
Problem Statement – 7 (Indian Air Force)
Problem Statement – 8 (Indian Air Force)
Problem Statement – 9 (Indian Air Force)
Problem Statement – 10 (Indian Air Force)
Problem Statement – 11 (Indian Air Force)
Problem Statement – 12 (Indian Air Force)16
Problem Statement – 13 (Indian Air Force)17
Problem Statement – 14 (Indian Air Force)
Problem Statement – 15 (Indian Air Force)
Problem Statement – 16 (Indian Air Force)
Problem Statement – 17 (Indian Air Force)
Problem Statement – 18 (Indian Air Force)
Problem Statement – 19 (Indian Coast Guard)25
Problem Statement – 20 (Indian Coast Guard)
Problem Statement – 21 (Indian Coast Guard)27
Problem Statement – 22 (Indian Coast Guard)
Problem Statement – 23 (Indian Coast Guard)
Problem Statement – 24 (Indian Coast Guard)
Problem Statement – 25 (Indian Coast Guard)
Problem Statement – 26 (AVNL)
Problem Statement – 27 (AVNL)
Problem Statement – 28 (AVNL)
Problem Statement – 29 (GIL)
Problem Statement – 30 (GIL)42
Problem Statement – 31 (GIL)43
Problem Statement – 32 (HAL)46
Problem Statement – 33 (HAL)47

Problem Statement – 34 (HAL)48
Problem Statement – 35 (HAL)
Problem Statement – 36 (IOL)
Problem Statement – 37 (IOL)
Problem Statement – 38 (IOL)
Problem Statement – 39 (BEL)
Problem Statement – 40 (BEL)
Problem Statement – 41 (BEL)
Problem Statement – 42 (BEL)
Problem Statement – 43 (BEL)
Problem Statement – 44 (BEL)
Problem Statement – 45 (MDL)61
Problem Statement – 46 (MDL)62
Problem Statement – 47 (MDL)
Problem Statement – 48 (MDL)
Problem Statement – 49 (MDL)65
Problem Statement – 50 (MDL)
Problem Statement – 51 (MDL)67
Problem Statement – 52 (MDL)
Problem Statement – 53 (BDL)
Problem Statement – 54 (BDL)
Problem Statement – 55 (BEML)
Problem Statement – 56 (BEML)
Problem Statement – 57 (GRSE)
Problem Statement – 58 (Defence Space Agency)
Problem Statement – 59 (Defence Space Agency)
Problem Statement – 60 (BRO)
Problem Statement – 61 (BRO)80
Problem Statement – 62 (BRO)
Problem Statement – 63 (BRO)82

Problem Statement – 1 (Army)

Organization	Indian Army	
Name		
Problem	Auto extraction of topographic features.	
Statement/		
Challenge title		
Challenge domain	DG MO	
	LANG TOT UPIENCE E	
Challenge	The proposal is to use AI/ ML to automatically extract	
brief/definition	manmade topographic features. It is proposed to generate	
	a model which can extract building footprints, roads,	
	railway lines and tracks in the first phase.	
Future Expectation	The AI/ML based solution to extract natural topographical	
from the	features from satellite imagery will be used at Comd. &	
prototype /	Cont. centres to ensure accurate map generation within	
Technology	shortest possible time span th <mark>ere</mark> by ensuring faster	
developed	decision making.	

Problem Statement – 2 (Army)

Organization	Indian Army	
Name		
Problem	Automatic activation device for combat free fall	
Statement/	parachute.	
Challenge title		
Challenge domain	DG Infantry	
Challenge	This is req. to cater the eventualities when a CFF	
brief/definition	personnel is not able to deploy his main canopy or if any	
IIIID	canopy malfunctions.	
Future Expectation	The AAD, being a critical component of CFF parachute	
from the	system and lifesavin <mark>g device</mark> will be used as safety	
pr <mark>ototype /</mark>	equipment for unfo <mark>reseen contingen</mark> cies during combat	
Technology	freefall missions and training. Thus, ensuring safety and	
developed	ensuring that the individual lands safely.	

Problem Statement – 3 (Army)

Organization	Ludian Anna	
Organization	Indian Army	
Name		
Problem	Integrated digital cockpit.	
Statement/		
Challenge title		
Challenge domain DG AC		
Challenge	Keeping recurring breakdowns and relatively inaccurate	
brief/definition	o/p given by analogue eqp. A digital Panel touch screen	
	equipped with a warning system is needed to access all	
	the data accurately at a glance and continuously monitor	
	AFV's health.	
Future Expectation	The digital panel to <mark>uchscreen equipment with a warni</mark> ng	
from the	system will ensure data accuracy and continuous	
prototype /	monitoring of the health of AFVs.	
Technology	The integrated digital cockpit will ensure timely repair	
develope <mark>d</mark>	without the need to search fo <mark>r the pr</mark> oblem at hand	
	thereby ensuring time critical repairs in situ.	

INDIA STARTUP CHA

Problem Statement – 4 (Indian Navy)

Organization Name	Directorate of Marine Engineering
Problem	Development of Laser-based Tools Techniques for Turbine
Statement/	(GT) to Reduction Gear (RG) and RG to Shaft Alignment.
Challenge title	
Challenge domain	Laser-based technology for Shaft Line Alignment
Challenge	Currently, the conventional methods (mechanical dial
brief/definition	gauge) are being used for alignment of GT to RG and RG
	to shaft line on-board IN warships.
	This technique has a number of significant drawbacks
	including-
	 Conventional methods are tedious and time
	consuming whic <mark>h require multiple</mark> iterations and are
	inefficient.
	 During capture of readings, no concurrent work can
	be progressed in Engine Room.
	 Special tools required for carrying out alignment are
	nonstandard and different across all platform/ ships.
Future Expectation	The laser-based GT to RG and RG to Shaft Line Alignment
from the prototype	tools/ techniques should be able provide a universal
/ Technology	solution to overcome the existing issues experienced
developed	while using the conventional methodology.
	The results will be more precise and able to capture
	sufficient readings to avoid multiple iterations.

A STARTUP CT

Problem Statement – 5 (Indian Navy)

Organization	Directorate of Staff Requirements	
Name		
Problem	Development of Underwater Target Structure (UTS).	
Statement/		
Challenge title		
Challenge domain	Underwater Target for Combat Torpedo Firings	
Challenge	Design and development of recoverable Underwater	
brief/definition	Target Structure capable of being deployed at sea by IN	
	Ships for combat torpedo firings.	
Future Expectation	Development of Underwater Target Structure with	
from the	following capabilitie <mark>s:</mark>	
p <mark>r</mark> ototype /		
Technology	1. Capable of deployment upto 100 m. depth towable.	
developed	2. Recoverable.	
	3. Assembly/dismantling at Naval Dockyards.	
	 Live feed of torpedo firings using underwater 	
	cameras.	
	5. Compatible with Acoustic Targets.	

MOIA STARTUP CHIM

Problem Statement – 6 (Indian Navy)

Organization	Directorate of Naval Intelligence
Name	
Problem	Naval Imagery and Target Information Network (NITIN).
Statement/	
Challenge title	
Challenge domain	Information Technology and Networking
Challenge	Design and development of imaginary cum target
brief/definition	software viz intended to carry of entire data-basing and
alle in	make the authentic data available for other agencies for
	immediate use during hostilities breakout.
Future Expectation	The two major submodules i.e. IMM (Imagery
from the	Management Modu <mark>le) and TAM (Target Analysi</mark> s Module)
prototype /	should be able to upload and download heavy images
Technology	(3GB), easy retrieval of data either by name,
developed	latitude/longitude, date, types, class of ships, or any
	other category by various age <mark>ncies w</mark> hen they sight
	foreign warship <mark>s and a</mark> rea/ v <mark>essels o</mark> f interest and able to
	deal with the Integrated Geospatial target folders (IGTFS)
E	and making them available for other User/ Agencies.
	Interface between GUI (Graphical User Interface)
	including GIS (Geographical Information System) and
	software in addition should have suitable AI engine for
	image recognition (as an when proven).
	STARIUS

Problem Statement – 7 (Indian Air Force)

Sponsoring Dte/	Indian Air Force - DGMS (Air)	
Command/		
Station		
Problem	Development of an indigenized Hypoxicator to provide	
Statement/	Normobaric Hypoxia Indoctrination to the aircrew.	
Challenge Title		
Challenge Brief/	The existing hypoxicator are imported. By virtue of which,	
Definition	they are expensive and require high maintenance. The	
(Give details of	availability of vendors and technical support is also limited	
innovation to be	for such hypoxicators. In addition, they do not conform to	
done by the start-	'Make in India' clause. Development of an Indigenized	
up and expected	hypoxicator would provide a safe and effective platform	
deliverables at the	for Aeromedical Training in line with international Military	
end of the project)	Training.	
	 Normobaric-hypoxia can be achieved by either of the following methods: Air separation through semipermeable membrane. Extracting oxygen from ambient air. Gas mixture from a single cylinder controlled by a solenoid valve and delivering different concentrations as per altitude (e.g., 8% O2 + 92% N2 to simulate 25000 ft). Different gas mixture in separate cylinders simulating different altitudes. 	
	 mixture is a simpler method not involving air separation. The QRs are as follows: Power supply: Equipment to be compatible with Indian commercial electric supply. Desired Altitude Range: From ≤ 5000 ft. upto 30000 ft. Duration of Operation: The equipment should be able to function continuously up to 10h/day. 	

Problem Statement – 8 (Indian Air Force)

Details Sought	Indian Air Force - Staff Comments	
Sponsoring Directorate/ Command/ Station	Dte of Ops (AD) (C & R)	
Problem Statement /Challenge title (give brief Definition)	Design and Develop Pressurized Radome for Indian Airforce Radar.	
Challenge Brief/ definition (Please give details of the innovation to be done by the start-up and expected deliverables at the end of the project)	These radars are already operational in IAF. In order to facilitate them operating in high altitude areas, it needs to be provisioned with Pressurized radomes.	
Future expectation from the prototype/ Technology developed	Radomes to be dismountable for facilitating reassembly at a new location. The radomes must be capable of facilitating the radar to operate upto an altitude of 5 KM AMSL.	

MOIA STARTUP CHA

Problem Statement – 9 (Indian Air Force)

Sponsoring Dte/	Indian Air Force - Dte of Ops Met	
Command/ Station		
Problem Statement/	Al/ML based prediction of Thunderstorm and Gale	
Challenge Title	force wind over an airfield.	
Challenge Brief/	Al/ML can be effectively employed to analyse and	
Definition	interpret the dynamics of Thunder Storm & predict the	
(Give details of	Thunder Storm and the Gale force wind over an	
innovation to be done	airfield. Forecasting and nowcasting of Thunderstorm	
by the start-up and	is one of the most challenging task. Nowcasting	
expected deliverables	associated with the Gale force wind mostly associated	
at the end of the	with Thunderstorm has been always a daunting task.	
project		
	Innovation:	
	A prototype Al/ML based module to be developed	
	using data of 4-5 airfields over different regions of the	
	country as model stations, thereby enabling coverage	
	of entire expanse of the country. Availability of airfield	
	data in terms of actual weather observations	
	statistical data (Aviation Weather Summary) LDS data	
	satellite Images and inputs from available DWR can be	
	utilised for the innovation	
	dunsed for the infovation.	
	Deliverables:	
	<u>Deliverables.</u>	
	Thunderstorm and associated Gale force wind during	
	nre-monsoon and monsoon seasons at 4-5 Airfield/	
	specified location 03-06 hours in advance	
	specifica location of objitours in advance.	
Future Expectation	1. Al/ML module developed is expected to predict	
from	Thunderstorm and associated gale force winds 03-	
Prototype/technology	06 hours in advance by ingesting real time	
developed	observational data.	
•	2. On successful development and attaining desired	
	capability similar module can be developed for all	
	the airfield or locations for which past data is	
	available.	

Problem Statement – 10 (Indian Air Force)

Sponsoring Dte	Indian Air Force - Dte of Trg
Command/ Station	
Problem	Development of Green and Saffron dye, same as the
Statement/	colors of the Indian National Flag, for Sanders SCSG-5R
Challenge Title	pods used in Suryakiran (Hawk Mk132) Aircraft.
	Coloured smoke for SCSG 5R smoke pods.
	infigior bereince Fr.
Challenge Brief/	Suryakiran Aerobatic Team uses SCSG-5R smoke pods to
Definition	dispense white smoke. Coloured smoke oil (within
(Give details of	specifications of flash point, viscosity, corrosiveness and
innovation to be	toxicity), for dispensation of Saffron and Green colour
done by the start-	smoke needs to be manufactured.
up and expected	
deliverables at the	
end of the project)	
Future Expectation	For trailing smoke depicting t <mark>he India</mark> n Tricol <mark>o</mark> ur by
from Prot <mark>otype/</mark>	Suryakiran Aerobatic Team.
technology	
developed	

INDIA STARTUP CHIP

Problem Statement – 11 (Indian Air Force)

Sponsoring Dte/	Indian Air Force – Dte of PM AIR
Command/	
Station	
Problem	Development of IR Identifier Patches.
Statement/	
Challenge Title	
Challenge Brief/	To identify friend or foe in a Sub Con environment, IR
Definition	tags/ patches/ identifiers were procured in the past by
(Give details of	few IAF agencies. The IR tags were to be identified by the
innovation to be	on board EOIR equipment of airborne assets to confirm
done by the start-	as friend or foe.
up and expected	
deliverables at the	 Although, the IR patches/ Tags/ Identifier were picked
end of the project)	up by NVG devices, however, same could not be
	picked up by EOIR equipment of the aircraft during
	the sorties flown in base defence profile.
	• The specifications of the equipment were studied and
	it was found that the EOIR equipment carried by the
	aircraft can only pick up IR signatures between 3 to 5
	microns and was not compatible with the wavelength
	of the IR patches, which radiated at 0.850 micron
	wavelength.
	• The tags available as on date offered by Indian
	vendors are not compatible with FOIR egot.
	 There is a requirement to develop IR identifier patches.
	which are in 3 to 5 microns or to provide a solution to
	overcome the issue
	overcome the issue.
Future	IR Patch/Tags/Identifier as an innovation cum
Expectation from	development project once found suitable during practical
Prototype/	demonstration shall be implemented all over IAF.
technology	
developed	

Problem Statement – 12 (Indian Air Force)

Sponsoring Directorate/Comman d/Station	Indian Air Force - Dte of Ops (Off)
Problem Statement /Challenge title	A starting aggregate that can supply the required electrical hydraulic and pneumatic output for slatting an Apache helicopter at altitudes upto 16000 ft.
Challenge Brief/ Definition (Give details of innovation to be done by the start-up and expected deliverables at the end of the project)	 There is a need to develop an air transportable starting aggregate which can provide the following outputs- Electrical: AC: 115V, 3Amp DC: 28V, 300Amp continuous. Hydraulic: Fluid at 145-3480 psi with fluid utilized Mil PRF 83282 or equivalent. Pneumatic: Provide Air at minimum 35 psi at a supply rate of 60 pound/min. The aggregate should be capable of providing the above mentioned outputs from sea level to a height of upto 16000 ft. The aggregate should be modular in construction and capable of being transported by Mi-17 class of ac. The aggregate should have the capability of operating stand alone and or with input supply from commercial electric grid (220V).
Future expectation from the prototype/ Technology developed	As per ORs mentioned above.

Problem Statement – 13 (Indian Air Force)

Sponsoring Dte/ Command/ Station	AIR HQ VB (OPS H)
Problem Statement/ Challenge Title	Smoke Generators for Sarang display Team. Intermittent smoke during display sorties. The smoke generators used in Sarang Helicopter Display Team (ALH) for display sorties use the principle of burning oil along with 100 LL to produce smoke. However, due to reduced RAM air the smoke generation is inadequately dispersed at times thus reducing the visual appeal. Additionally, even after repeated colour smoke trials, the desired result is not achieved.
Challenge Brief/ Definition (Give details of innovation to be done by the start-up and expected deliverables at the end of the project)	 The smoke generators get regularly clogged due to unburnt oil particles and more so due to unburnt colour particles during colour smoke trials. The helicopter is flown at speeds as low as zero (hover) to max speeds of 210 Kmph. Due to the lesser speeds the required air to disperse the smoke can only be generated by a fan installed on the smoke generator. This is quite inadequate to provide required results and the reliability of smoke generator serviceability is not guaranteed. Thus, canister type smoke generator may be explored to be utilized for display. The major requirement is to be able to generate smoke (white as well as coloured) while undertaking display manoeuvres and aerobatics.
Future Expectation from Prototype/ technology developed	The same can be used regularly for all displays by helicopters in IAF.

Problem Statement – 14 (Indian Air Force)

Sponsoring Directorate/ Command/Station	AIR HQ VB (OPS H)
Problem Statement/ Challenge title	Wireless Headset for flight gunner. The current/ legacy headsets allow external noise from engine and rotors to hinder the communication between crew, thereby reducing crew SA and hampering CRM. This has connotations for flight safety, as well as the health of aircrew (nossibility of
	hearing loss due to persistent high noise levels). Further, the MLH fleet is being used in various roles where the Flt Gnr has to go outside the cargo and assist the operations (e.g. handling underslung load, crowd control etc). While doing the same he is not able to communicate with the Capt and vice versa. Availability of wireless communication between them would greatly aid safety and efficacy of ops.
Challenge Brief/ Definition (Give details of innovation to be done by the start-up and expected deliverables at the end of the project)	A secure/ encrypted, ergonomic, noise cancelling, wireless (range of 50m) headset with adequate battery life and, integrated (plug and play capable) with existing ICS of MLH.
Future expectation from the prototype/Technology developed	Nil, (One-time successful development will suffice for foreseeable requirements till MLH are in service)

Problem Statement – 15 (Indian Air Force)

Sponsoring Dte/ Command/ Station	Directorate of Eng T(R2), Air HQ (VB)
Problem Statement/ Challenge Title	Standalone data decoder for AWACS aircraft and aero engines.
Challenge Brief/	Processing of recorded flight data, stored on memory
Definition	card of solid state recorder unit TBN-K and DFDR, is
(Give details of	performed by means of ground processing integrated
innovation to be done	system Topaz-M using special software SKAT. The
by the start-up and	Topaz-M presently runs on Dell P37 G laptop with
expected deliverables	Windows XP and Windows-7 operating systems.
at the end of the	However, processing the SKAT software requires a
project)	HASP key provid <mark>ed by th</mark> e OEM.
	Recording and processing of engine parameters is
	through ASK-PK <mark>O. The ASK-PKO sy</mark> stem is currently
	using different software like ASK-convert, ASK-DB,
	ASK-PKO & ASK-TCP running on Windows XP
	operating system.
	Porting of T <mark>opaz-M</mark> and A <mark>SK-PKO</mark> system software
	along with required tools and keys on additional
	PC/desktop computer.
	Development of Software tool for analyzing the
	engine data (Presently being carried out by OEM) and
	for health monitoring of airframe system and engine.
Future Expectation	The standalone item will be used for extracting data/
from Prototype/	decoding and in-depth analysis of AWACS aircraft and
technology developed	engine parameters independently by the operating
	unit thus reducing dependence on OEM. Sufficient
	number of these tools will enhance operational
	readiness of strategic asset especially for detachment
	tasks.

Problem Statement – 16 (Indian Air Force)

Sponsoring Dte Command/ Station	Dte of Ops (Off) / Garud
Problem Statement/	Real Time RPA Video Feed to Garud Special Task
Challenge Title	Force.
	SATCOM based RPA Handheld Receiver for IAF Special
	Forces Garud.
Challenge Brief/	Special Forces operate in conventional and sub-
Definition	conventional operations where real time RPA/UAV
(Give details of	feed through SATCOM link can exponentially enhance
innovation to be done	their situational awareness and therefore, the
by the start-up and	effectiveness of special operations.
expected deliverables	
at the end of the	
project	
Future Expectation	Live feed received on the Receiver through SATCOM
from Prot <mark>otype/</mark>	or V-SAT Mobile Vehicle should be compatible with
technology developed	NAVIC Handheld Terminal and should seamlessly
	integrate with its existing configuration.

INDIA STARTUP CHIP

Problem Statement – 17 (Indian Air Force)

Sponsoring Dte/	Dte of Ops Met
Command/ Station	
Problem Statement/ Challenge Title	Automated cloud observation and reporting using Al/ ML. Al/ML can be effectively employed for automated cloud observation and reporting at an ALG/ Helipad/ DZ/ Airfield.
Challenge Brief/	Presently, clouds are reported based on visual
Definition	observation. It has certain limitations due to limited
(Give details of	view from the observation point and difference in
innovation to be done	observation skills of observers which leads to some
by the start-up and	subjectivity. At p <mark>resent equipment available at M</mark> et
expected deliverables	sections for the <mark>cloud measurements are Laser Ra</mark> nge
at the end of the	Finder (LRF) and Laser Ceilometers. These equipment
project)	observe only overhead cloud height and LRF cannot
	 be used during precipitation. Innovation: A prototype AI/ML based module integrated with camera/ imaging device to be developed for installed at 4-5 airfields over different regions of the country as model stations for real time observation and reporting of clouds (as per the cloud reporting guidelines issued by World Meteorological Office (WMO) and International Civil Aviation Organisation (ICAO) in Met observation). The innovation is expected to scan the sky 360° and convert it in cloud observation report.
	 Deliverables: GUI based interactive AI/ML module integrated with suitable imaging device (which scans the sky 360°) for installation at 4-5 airfields over different regions of the country as model stations to observe and report cloud.

	 It may be programmed to apply correction in height of clouds, considering the angle at which equipment is scanning. It should also have provision of integration with cloud measuring equipment like ceilometer to provide complete cloud image instead of only overhead observation.
Future Expectation	 Automated cloud observation and reporting
from Prototype/	capability in integration with an
technology developed	equipment/camera for scanning the sky.
- aller	 Provision for time period selection for automated
	cloud reporting (i.e. every 10 min, 30 min or 1 hr
	etc.).
	Provisions for integration with other cloud
	measuring equipment like ceilometer.
	 If performance is found satisfactory, equipment
	may also be integrated with Automatic Weather
	Stations (AWS).

INDIA STARTUP CHIA

Problem Statement – 18 (Indian Air Force)

Sponsoring	Indian Air Force - DGMS (Air)
Directorate/	
Command/Station	
Problem Statement/	Development of a full coverage, lightweight,
Challenge title (give	airworthy, Anti-G suit to provide protection up to 9
brief Definition)	Gz automatically, without straining by the pilot.
	stor Defense
Challenge	The current Anti-G suits provide protection up to 6
Brief/definition	Gz. While aircraft are capable of 9 Gz. The gap
(Please give details of	between 6-9 Gz is covered by the pilot's straining.
the innovation to be	This results in an ever present danger of G-induced
done by the start-up	loss of consciousness, wavering of attention from the
and expected	task at hand, fatigue especially when several Gz is to
deliverables at the	be sustained and abandoning of a situation of
end of the project)	advantage, in th <mark>e event of a grey-out</mark> .
	 The Anti-G Suit (AGS) will consist of a full coverage garment, covering the entire torso, legs and arms. The head and neck, hands and feet will not be enclosed in the garment. The garment will be pressurized using inflatable bladders. Developing of the AGS would entail the following-Selection of a suitable fabric, that is: Breathable. Non-stretchable. Durable. Light weight. Wearable. Gentle on the skin.
	Design and Development of a bladder system that is:
	Lightweight.
	 Correctly sized for adequate protection.
	 Correctly positioned for adequate protection.
	• A correct number for adequate protection.

	 Designed and placed so that undue heat load is not applied on the pilot. Designed for pilot comfort.
	Stitching and fitment:
	 Snug fitment for adequate protection.
	 Adjustable fitment so as to reduce the logistic challenge.
	 Tear proof stitching.
mawati	Integration with the existing Anti-G system of the aircraft of the IAF.
Future expectation	If the technology is successful, it would be a game
from the prototype/	changer for combat effectiveness in the IAF, providing
Technology	a definite militar <mark>y edge over</mark> the adversary.
developed	

Problem Statement – 19 (Indian Coast Guard)

Organization Name	Indian Coast Guard
Problem Statement/ Challenge title	Interconnected Wearable Safety Bands. It has proved difficult to locate sea-farers during night in an eventual case of going overboard especially during monsoon season. There is a need to electronically monitor movement of personnel on weather decks.
Challenge domain	Marine Electronics/ Safety of life at Sea
Challenge brief/definition	 Wearable Safety bands to be worn by all sea-farers which are interconnected to each other and also connected to a mother device in the ship. During sailing if a person goes overboard, the loop of connection will be broken and alarm will be generated in the mother device. The Safety band worn by person overboard will automatically send GPS coordinates to the mother device thus helping in easier location of the person at distress.
Future Expectation	The wearable safety bands can be worn by all sea-
from the prototype/	farers during sailing and will provide additional boost
Technology	In confidence for keeping lives safe at sea. The safety
developed	bands can have features like waterproofing, SOS signal projection, active GPS which can be lifesaving in case of any eventuality.
	TA STARIU

Problem Statement – 20 (Indian Coast Guard)

Organization Name	Indian Coast Guard
Problem Statement/	Indigenisation on Vacuum Toilet System with sewage
Challenge title	treatment plant.
Challenge domain	Environmental / Ecological requirements
Challenge	Ships to be provided with Vacuum Toilet System for
brief/definition	collection of sewage from WC's fitted onboard. The
	collected sewage is to be treated prior as per MARPOL
	(Annex IV requirement). ICG ships are equipped with
	foreign make Vacuum Toilet System. The non-
	operationalization of tollet system affects the
	nabitability and in turn affects the operational
	availability of ships.
Future Expectation	Lesser dependency on foreign firms and easier
from the prototype /	availability of spare parts.
Technology	
developed	

CRIMINA STARTUP CHIP

Problem Statement – 21 (Indian Coast Guard)

Organization Name	Indian Coast Guard
Problem Statement/	Integrated M-SAR Incident Management and Op
Challenge title	Planning Software.
Challenge domain	Indian Search and Rescue Region (Maritime) and
	Indian Ocean Region
Challenge brief/definition	 ICG has been entrusted with duties of nodal agency for coordination of Maritime Search & Rescue in the ISRR as well as larger IOR/Indo-Pacific Region. The region witnesses large number of merchant traffic, fishing, small vessels and air traffic, coupled with increased frequency of cyclonic disturbances increase likelihood of threat to life/property. Analysis, Collation, Fusion and Management of large number of merchant, fishing, small vessels aviation traffic data on single GIU and utilizing the same for SAR/maritime incident management requires integration of many databases and inhouse Incident Management Software. Besides, an Integrated Planning software with Met/Oceanic and Topographical oceanic inputs as well as maritime traffic databases would optimize the planning of search areas/search patterns, identifying SRUs, accurate and timely dispatch of Search and Rescue Services to mariners in Distress including fishermen at sea. Similar software have been developed in-house by foreign countries for
	such as SAROPs, SAR Master 600, BMT SARIS.
Future Expectation from the prototype / Technology developed	1. The software can be integrated with real-time inputs and AI from SRUs, On Scene Coordinators, and Surveillance Units for Real Time Management of SAR Operation. The technology would assist in realizing aims of digitization, meta-data analytics, integration of AI, UAVs and technology in saving lives.

2. It will serve the larger obligations and
commitment of India under the SAR Convention,
1979 and UNCLOS.

Problem Statement – 22 (Indian Coast Guard)

Organization Name	Indian Coast Guard
Problem Statement/ Challenge title	Designing and Manufacturing of Outer loop, Inner loop and skirt segment for H 187 class of ACV.
Challenge domain	All ACVs operated by the Indian Coast Guard are of flexible skirt type with a high lift. A special flexible fibre reinforced rubber composite outer loop, inner loop and skirt segment is fitted around the hull frame and 128 rubber skirting fitted within the outer loop act together to trap the air pumped in by four centrifugal lift fans driven by diesel engines. These loops have tendency to tear off due to rough terrain on which crafts are operated. The cost of single unit of outer loop along with anti-plough diaphragm and rear inner loop is approximately 96 lakhs which is manufactured in M/s Griffon Hoverwork Ltd, UK which includes the shipping charges and custom duty. High cost and long lead time for procurement and supply of these spare not only keeps the craft non- operational but also in views loss to government.
Challenge brief/definition	Manufacturing of outer loop, inner loop and skirt segment along with anti-plough diaphragm and rear inner loop for all ACVs along with design machinery by DRDO/MSME in India will enhance the operational capabilities and will be cost effective for the Indian Coast Guard. The cost of the spare will be nominal and the lead time will considerably reduce.
Future Expectation from the prototype / Technology developed	Once the firm/vendor is finalised for manufacturing and designing the loop, its durability and operation ability can be tested on NCNC basis.

Problem Statement – 23 (Indian Coast Guard)

Organization Name	Indian Coast Guard
Problem Statement/	Hanging underwater probe (with camera and other
Challenge title	sensors) for ships.
Challenge domain	Maritime
Challenge	Hanging underwater probe with camera and other
brief/definition	sensors can aid to maritime surface platforms in
- MUL	many ways like, underwater search & surveillance.
	In terms of specification, it can be in cylindrical shape
	with dia. not exceeding 50 cm, equipped with camera
	& light, multiple sensors for depth, pressure &
	temperature, magnetic compass and audio frequency
	receiver. It should be controlled th <mark>ough hanging wir</mark> e
	and able to operate upto 500 <mark>metr</mark> e depth. It should
	have safety feature for aut <mark>o resurf</mark> acing in case of lost
	control or any other emergency.
Euturo Exportation	ICC Ships may use the device for multi purposes like
from the prototype /	underwater search for survivers /bedies_debris of
Tochnology	aircraft/Hole vessels and also for underwater
rechnology	aircrait/Helo, vessels and also for underwater
developed	surveillance and inspecting underwater fittings
	amongst otners.
MOIA STADTUP CHIL	

Problem Statement – 24 (Indian Coast Guard)

Organization Name	Indian Coast Guard
Problem Statement/	Wireless Boarding Camera set for VBSS (Visit, Board,
Challenge title	Search and Seizure) in Indian Coast Guard Ships.
Challenge domain	The idea is to provide the team with a wireless
	camera to establish a live video coverage of the vessel
ii.	boarded. The prototype developed consist of the
	following:
	 Helmet mounted wide angle IP camera.
	 02 Radio transmitter (Onboard and BO).
	 Battery Pack for power supply to camera and transmitter (Held with BO).
	 System Integrated with router onboard.
Challenge	Indian Coast Guard is a maritime law enforcement
brief/definition	(Anti-poaching /Anti-narcotics /Anti-Human
	trafficking ops) and Search & Rescue agency of India
	with jurisdiction over MZI <mark>. The su</mark> rface platforms are
	immensely r <mark>espon</mark> sible for majority of the above
	activities and they are carried out through dedicated
	boarding teams. Presently, only radio sets i.e. walkie-
	talkie are the only source of communication (Voice)
Sile.	between boarding teams and mother ship.
	Presently, the scenario onboard the boarded vessel
	cannot be ascertained through any visual aids.
	Therefore, Provision of a live relay of the events
	during the course of boarding is considered to be
	essential. Hence, a live streaming of events are
	relayed through an IP camera held with Boarding
	officer (BO) for clear Surpic and adding on to the
	flawless boarding operations at sea.

Future Expectation	1.	The prototype may be expanded to include
from the prototype /		microphone to enable audio/video coverage.
Technology	2.	The camera transmission may be integrated with
developed		ship's VDR unit to provide recording of the same
·		which might help in future processing and
		collation of data.
	3.	Expansion of range of wireless transmission using
		high power transmitters.
	4.	Use of low weight to power ratio battery pack.

Problem Statement – 25 (Indian Coast Guard)

Organization Name	Indian Coast Guard
Problem	Virtual Reality based Fire Fighting and Damage Control
Statement/	training module.
Challenge title	Fire Fighting (FF) and Damage Control (DC) proficiency is
	essential in the professional repertoire of ICG personnel.
	Exposure to realistic situations during routine training is
	most effective method to develop FF and DC skills and
140	also familiarize personnel to different contingencies.
all ^b	However, simulating realistic fire or flooding onboard is
	dangerous and not permitted. Simulators are elaborate,
	prohibitively costly and maintenance intensive shore-
	based facilities. He <mark>nce such simul</mark> ators cannot be
	installed at multipl <mark>e locations. ICG un</mark> its are based at
	different ports.
Challenge domain	Virtual Reality aided training
Challenge	Developing Virtual Reality based FF and DC training
brief/definition	module. The V <mark>R base</mark> d training module should mimic
	real life fire and flooding situations authentically so that
	training can be conducted in safe environments without
	exposing equipment and personnel to any significant
11/2	risk.
Future Expectation	The VR based FF and DC training module can be used by
from the prototype	ships for imparting credible training onboard in a cost
/ Technology	effective and safe way. It can also be developed to train
developed	ICG personnel to conduct FF and DC operations onboard
	Merchant Vessels, Fishing Boats etc.

Problem Statement – 26 (AVNL)

Organization Name	AVNL
Problem	Design & Development of-
Statement/	1. Converter.
Challenge title	2. Gyro Unit.
	3. Frequency And Voltage Regulating Unit.
Challenge domain	Weapon stabilizer Assembly involves Hydraulic Power
140	system controlled by High precision Electronic stabilizer
	system with the help of Gyro Unit (It involves
	complicated electro mechanical assemblies).
Challenge	CONVERTER ALONG WITH FREQUENCY AND VOLTAGE
brief/definition	REGULATOR [T-90]
	TECHNICAL DESCRIPTION Converter along with regulator RChN 3/3 generates the 3 phase 36V, 400Hz AC current from 27 V DC supply to power the FCS system components which work on AC current such as gyro, synchro-resolvers etc. It is an electro-mechanical type converter. Frequency and voltage regulator RChN 3/3 regulates output voltage and frequency. The voltage converter PT 800 is located below the gun cradle while the regulator unit is located on the turret base plate in front. RATE GYRO TECHNICAL DESCRIPTION The rate gyro unit is designed to generate electric signals proportional to the angular laying speed of the gun in elevation and azimuth, which are required for the
	obtaining the desired transient. Besides, the signal generated by the elevation rate gyro unit is used for the hydraulic locking of the gun when it

	rebounds from the upper or lower stop at an angular speed exceeding 7+15 deg/s and for its additional
	braking when it goes down at an angular speed
	exceeding 7+15 deg/s in order to prevent it from coming
	in contact with the ground. The rate gyro unit is located
	on the base of the gun guard.
Future Expectation	T-90 tanks production.
from the prototype	T-90, OE Tanks.
/ Technology	T-90, OH Tanks. EI EIICE
developed	

INDIA STARTUP CHA

Problem Statement – 27 (AVNL)

Organization Name	AVNL
Problem	Design & Development of-
Statement/	1. Supply Unit (Hydraulic Booster) Assembly.
Challenge title	2. Actuating Cylinder.
Challenge domain	Weapon stabilizer Assembly involves Hydraulic Power
	system controlled by High precision Electronic stabilizer
100	system with the help of Gyro Unit (It involves
	complicated electro mechanical assemblies).
Challenge	HYDRAULIC BOOSTER
brief/definition	
	TECHNICAL DESCRIPTION
	The hydraulic booster is designed to transform the
	electric energy in the working fluid flow energy. The
	hydraulic booster is located on the gun guard base.
	ACTUATING CYLINDER
	The actuating cylinder is designed to transform the
	working fluid flow energy into the stabilizing or locking
	moment upon arrival of the respective electric signals.
	The body of the actuating cylinder is connected to the
	curret root and its piston, to the gun cradie. The
	actuating cylinder is located to the left of the gun ahead
	of sight 1646.
Future Expectation	T-90 tanks production.
from the	T-90, OE Tanks.
prototype /	T-90, OH Tanks.
Technology	
developed	

Problem Statement – 28 (AVNL)

Organization	AVNL
Name	
Problem	Design & Development of-
Statement/	1. Amplidyne Assembly.
Challenge title	2. Electric Motor Edm-1500.
	3. Pump With Drive Motor.
Challenge domain	Weapon stabilizer Assembly involves Hydraulic Power
Wr.	system controlled by High precision Electronic stabilizer
	system with the help of Gyro Unit (It involves
	complicated electro mechanical assemblies).
Challenge	AMPLIDYNE T-90 TANKS ONLY
brief/definition	
	TECHNICAL DESCRIPTION
	The Amplidyne is an electromechanical power amplifier
	designed to amplify the electric control signal (coming
	from K1) up to the value required for the operation of
	the actuating motor. The Amplidyne is composed of a
	drive, electric motor and special generator mounted in
	one and the same housing on a common shaft. The
	Amplidyne is located in the left part of the hull near the
	storage batteries.
	ELECTRIC MOTOR EDM-1500 SPECIFICATIONS T-90
	Tanks Only
	1D. CHIL
	TECHNICAL DESCRIPTION
	The Hydraulic Motor converts the energy of working
	fluid into mechanical energy of output shaft. The High
	Torque Hydraulic Motor consists of Hydraulic Motor and
	Distributor.

Future Expectation	T-90 tanks production.
from the	T-90, OE Tanks.
prototype /	T-90, OH Tanks.
Technology	
developed	

Problem Statement – 29 (GIL)

Organization	GIL
Name	
Problem	Design & Development of Automatic Actuation Device
Statement/	(AAD) For Reserve Parachute System.
Challenge title	
Challenge domain	Defence Aerospace/Recreational and Adventure sports
	tor Derence E
Challenge	Parachuting is used by military personnel, paratroopers,
brief/definition	wildfire-fighters, skydivers at sporting events of skydiving
	or air shows and others as a vital part of their profession/
	hobby.
	Whatever the reason for parachuting, safety is a primary
	concern. In addition to a primary parachute, most
	parachutists equip themselves with a secondary or
	reserve parachute. If the primary parachute
	malfunctions, the parachutist deploys the reserve
	parachute in order to land safely.
	AAD is a safety device which is fitted with reserve
	parachute and initiate automatic opening of reserve
	parachute in case of free fall speed exceeds a prescribed
	limit below specified altitude. This unit is in three parts
	viz control unit, processing unit and cutter.
	Design requirement of AAD System-
	AAD system must consists of following:
	• It should be capable of calf calibration
	It should be clostropic bettery operated temper
	It should be electronic battery-operated tamper- proof system with battery life of more than four
	voors
	yedis.
	• weight: It should not be more than 250 gms.
	It should have provision for activation at preset
	aititude and free fall velocity.

constantly seek for reliable AAD, which creates a
substantial market opportunity for this item.
This equipment will be helpful reliable device for
promoting safe free fall parachuting/Aero Sports culture
within India.

Problem Statement – 30 (GIL)

Organization	GIL
Name	
Problem	Design & Development of Inter personal radio for
Statement/	combat free fall parachuting operation.
Challenge title	
Challenge domain	Defence Aerospace
Challenge	The parachutist uses Interpersonal Radio for air-to-air or
brief/definition	air-to-ground communications. He mounts the radio so
	that it also does not interfere with the manual activation
	of the main parachute or the performance of emergency
	procedures.
	Design requirement of Interpersonal Radio-
	The radio should work in the V/UHF band and should
	have following features:
	 Small form factor to fit into the jump suit of the free
	faller.
	 Compatible with the mission computer for transfer of
	data between jumpers post deployment of parachute.
	 Have ear phone and microphone compatible with the
	helmet for in-flight voice communication.
	 Should be shock proof and water resistant upto depth
	of 5 feet of water.
	 Built in encryption card for high end secrecy
	requirements.
Future Expectation	The demand for this high-quality combat free fall
from the	parachuting equipment i.e. Interpersonal Radio is mainly
prototype /	driven by requirement of Indian Armed Forces. This
Technology	equipment will be helpful reliable device for promoting
developed	safe and successful combat free fall parachuting for
-	Indian Armed Forces.
	Once developed same item can be customized and
	exported as per requirement of foreign Armed forces.

Problem Statement – 31 (GIL)

Organization	GIL
Name	
Problem	Design & Development of Mission Computer with
Statement/	Navigation System for combat free fall parachuting
Challenge title	operation.
	tor Defen
Challenge domain	Defence Aerospace
Challenge	The mission computer is used to improve jumpers
brief/definition	situational awareness about the mission progress,
	improves safety and increases the effectiveness of
	military jumper by providing accurate navigation even
	for most demandin <mark>g mission. Miss</mark> ion computer includes
	the following:
	One Pilot Unit.
	One Display Screen.
	One support board or harness.
	One compass.
	Design requirement of Mission Computer with
	Navigation System:
	1. System should be specifically designed for the combat
	free fall mission using ruggedized modules and
	proven sensors/software.
	2. There should be facility to configure display based on
	jumper's experience and mission requirement.
	3. Types of information display available to the jumper
	should be:
	• Jumpmaster screen to be used on the plane to
	check the progress of the flight towards the
	release point.
	 Navigation screen to be used under canopy to
	guide the jumper towards the landing zone.

	reliable device for promoting safe and successful combat
	free fall parachuting for Indian Armed Forces.
	Once developed same item can be customized and
	exported as per requirement of foreign Armed forces.

Problem Statement – 32 (HAL)

Organization	HAL
Name	
Problem	Development of UHF and L Band Ground Sectoral
Statement/	Antenna.
Challenge title	
Challenge domain	Avionics and Communication
	tons for Derence Su
Challenge	 Antennas should work in UHF band and L band.
brief/definition	• The antennas gain should be not less than 10 dBi in
	case of UHF antenna and the gain for L band antennas
	should be not less than 12 dBi.
	• The antenna Hal <mark>f Power be</mark> am width in Azimuth
	should be not le <mark>ss than 90 degree</mark> s.
	• The antennas should be vertically polarized.
	• The antenna shall be designed to withstand various
	environmental conditions, including temperature,
	humidity and wind stress load as per JSSS5555 or MIL-
	810-F/G.
Future Expectation	It is expected to achieve optimum data communication
from the	ranges from the developed antennae for the data link
prototype /	systems under development at HAL.
Technology	
developed	
	STA STARIUS
	UTAN

Problem Statement – 33 (HAL)

Organization	HAL
Name	
Problem	Development of "Four phase dual coil stepper motor
Statement/	with resolver (feedback)".
Challenge title	
Challenge domain	Aero Engine fuel metering system
Challenge	India is still dependent on countries like France, Germany
brief/definition	and US for the supply of stepper motors for the use in
	fuel metering system.
	Currently there is no firm in India which has developed
	an airworthy stepper motor for the above said use.
	The specification and qualification requirement of the
	component is specified below.
	Type: Hybrid stepper motor
	 Voltage: 28V DC(Nominal), varying from 14 to 32 V
	 Constant current control: 1 A ± 10mA
	 Stepping Angle: 0.5°/1° (Half step / Full step)
	• Dynamic torque : 15 Oz-in (1080 gm-cm) min.
	• Temperature range: -40 °C to +70 °C
	Maximum stepping rate: 500 Steps /sec
	Medium of cooling: Air cooling
	 Number of phases: 4 Phases (A, B, C & D)
	• Resolver Supply: 5.5 to 10 VAC, 2500± 250 Hz
	Coil type: Dual coil type
	Winding insulation: Class H
	No. of Phase leads: 6
	• Phase Lead requirement: MIL-STD; 6 pin for each
	channel of stepper motor and for resolver.
Future Expectation	The stepper motor so developed will be used on many of
from the	the engines that are being developed at AERDC-HAL.
prototype /	
Technology	
developed	

Problem Statement – 34 (HAL)

Organization	HAL
Name	
Problem	Development, Implementation, Validation of Time
Statement/	Sensitive Network (TSN) Operation using Ethernet
Challenge title	Communication for Aerospace Onboard Systems.
	Care Defen
Challenge domain	Avionics and Communication
	KIUM- KCAM
Challenge	To validate the Time Sensitive Network (TSN) Operation,
brief/definition	Innovator shall develop the following using Standard
	Hardware Evaluation Boards available in Market:
	• TSN Switch having minimum of 5 Nodes.
	High Resolution Camera, which provides Live Audio
	and Video through TSN Ethernet.
	High Resolution Monitor which can accept video over
	TSN Ethernet.
	Stereo Audio Head Set which can accept Audio over
	TSN Ethernet.
E	• Standard Ethernet Ports (Minimum 2 No's) from PC or
	Laptop.
	Innovator shall Design Time Sensitive Network (TSN)
	Switch and TSN Nodes as per IEEE 802.1DP (Draft)
	Protocol.
	TSN Switch shall also support integration with Non-TSN
	Ethernet (Standard Ethernet Ports).
	Suitable Converters/Adapters may be used while
	connecting TSN Nodes to Standard Ethernet if required.
	All TSN Nodes and Standard Ethernet Ports shall be
	connected to TSN Switch.

	Innovator shall demonstrate a TSN Network Operation
	with the following functions:
	• Display of Live Video from Camera on Monitor.
	 Playing of Live Audio from Camera on Stereo Audio Head Set.
	 Recording of Audio & Video from Camera on
	PC/Laptop.
	 Playing Video from PC/Laptop on Monitor.
	 Playing Video from PC/Laptop on Stereo Audio Head Set.
annu annu	 Data Exchange between Two PCs/Laptops.
Future Expectation	TSN Switch will be used to connect TSN Ethernets in
from the	Future Aircrafts and Helicopters. Therefore, Innovator
prototype /	shall be ready to De <mark>sign and Deve</mark> lop (in future) a
Technology	Military Standard T <mark>SN Switch (Hardwa</mark> re & Software)
developed	with all Certifications from Certification Agencies.
	Innovator shall support the im <mark>plemen</mark> tation o <mark>f TSN Nod</mark> e
	in HAL Developed Hardware Boards.
	Innovator shall provide support during integration of TSN
E	Ethernets wherever Innovator's Design is involved.

MOIA STARTUP CHAI

Problem Statement – 35 (HAL)

Organization	HAL
Name	
Problem	Development of "Spark type Ignitor box and ignitors".
Statement/	
Challenge title	
Challenge domain	Aero Engine Ignition system
	THE TOT LIEIENCE C.
Challenge	Ignition unit is required for ignition of fuel air mixture in
brief/definition	the combustor of a gas turbine engine during engine
	start phase. This unit consists of a low voltage high-
	energy ignition box, high voltage leads (2 nos.) and spark
	plugs (2 nos.)
	Specifications-
	Input voltage: 12 to 32 V DC
	Maximum Input current: 2A
	Output signals: 3 kV
	• Frequency: 1.5 to 3.5 Hz
	No. of output: 2 Nos.
E	• Energy given by the output: 0.40 to 0.70 Joules
	Minimum spark rate: 3.3 Hz
	Discharge: Unidirectional
	• Temperature: - 55 to +125 °C
	• Weight: 0.5 to 0.7 kg
	• High voltage cable length: 0.5 to 0.6 m
Future Expectation	HAL needs qualified units of these ignitors and ignitor
from the	boxes.
prototype /	
Technology	
developed	

Problem Statement – 36 (IOL)

Organization	IOL
Name	
Problem	Indigenization/development of Active Element of Laser
Statement/	Made of Yttrium Alumino Garnet (YAG) Activated
Challenge title	Neodium, GS 4X65/55-D73 (Technical Specification: TY-6-
	09-4622-87) for MIB (T-90).
Challenge domain	Optical Fabrication of precise and critical Infrared Optics
We all	In Cell
Challenge	Active Element of Laser made of Yttrium Alumino Garnet
brief/definition	(YAG) Activated Neodium, GS-4X65/55-D73 (Technical
	Specification: TU-6-09-4622-87) for MB (T-90) is a
	specific type of very precise and accurate rhombus type
	laser accuracy of th <mark>e order of X/10 or</mark> better.
	Being a specific type of CW (continuous wave) laser Rod,
	it is being used to generate laser to guide the Missile
	Fired.
Future Expectation	As of now the l <mark>aser Ro</mark> d is no <mark>t being</mark> manufactured in
from the	India.
prototype /	
Technology	
developed	

INDIA STARTUP CHILL

Problem Statement – 37 (IOL)

Organization	IOL
Name	
Problem	Development of an Eye Safe Laser Range Finder.
Statement/	
Challenge title	
Challenge domain	Electro optical domain
Challenge brief/definition	Laser Range Finder is an important module used in the multi sensor electro-optical systems for measuring the range of target. This module is also used as a standalone system also. All the fire control systems are equipped with laser range finder. In this challenge it is proposed to develop an eye safe laser range finder in miniaturized form for measuring the range of target. Prototype developed in the challenge should have its inbuilt electronics and processing electronics for measuring the range of target and then displaying electronically on a screen.
Future Expectation from the prototype / Technology developed	Having a good quality, ruggedized and miniaturized Eye Safe Laser Range Finder.
4 STARTUP C	

Problem Statement – 38 (IOL)

Organization	IOL
Name	
Problem	Development of an Image Processing algorithm for image
Statement/	quality enhancement and Non Uniformity Calibration for
Challenge title	bad pixel-correction for Cooled Thermal Imagers.
Challenge domain	Electro optical domain
Challenge	Thermal Imaging technology is latest technology for
brief/definition	night imaging. Cooled thermal imaging technology uses a
	photon detector which is cooled by a cryogenic cooler
	for better signal. Non Uniformity is natural phenomenon
	associated with the <mark>se imagers due</mark> to the multiple pixels
	in Focal Plane Array <mark>. These non-unifo</mark> rmity in pixels
	causes an uneven image.
	In this challenge it is proposed to develop an algorithm
	for image quality enhancement, non-uniformity
	calibration and incorporation of various reticles by taking
	the raw data from the proximity electronics of the
	detector and processing this raw data in Video
	Processing board for good image.
Future Expectation	Having a good algorithm for image processing will
from the	enhance the performance of thermal imager.
prototype /	
Technology	ULA BEADTILL U'
developed	YA SIARIW

Problem Statement – 39 (BEL)

Organization	BEL
Name	
Problem	Read Out Integrated Circuit for Imaging Sensors (Low Light
Statement/	CMOS, IR Sensors etc.)
Challenge title	
Challenge domain	Silicon Semiconductor recipe Design, Device Processing &
	Fabrication at 40 nm Node.
Challenge	Si semiconductor design of the ROIC with the following
brief/definition	specs:
	 Material: Si Format: 1280 x 1024 Pixel Size: 4/ 10um Pitch: 4/ 10um ADC: 13 /14 bits Modes of operation: IWR, ITR Integration time: 1 to 10 ms Variable Frame Rate: 200 Hz Flip Chip Bond: Indium Bumped
from the	Low Light CMOS Sensor of the same format to make an
nom the	EDV Light CMOS Sensor of the same format to make an
Tochnology	solutions
developed	Solutions.
ueveloped	
	STARIUS

Problem Statement – 40 (BEL)

Organization	BEL
Name	
Problem	To develop Proximity Sensor of Aerial Bomb Fuze for
Statement/	activating Fuze firing circuit.
Challenge title	
Challenge domain	Proximity Sensors
Challenge	The Proximity Sensor should function correctly when the
brief/definition	Fuze is subjected to the following carriage envelop:
	 Max Altitude: 18 km or more Mach Number: 1.5 or more
	• 'G' Loading: -4g to +7.5g
	 Ambient Operating temp: -50°C to +71°C
	 The Proximity sensor: Should be mountable inside existing Aerial Bomb Fuze. Should activate Fuze firing circuit at height of 9±3m from target at all weather conditions and terrain. Should be immune to external RF noise. Should have no maintenance through its entire life cycle. Reliability ≥ 95% Shelf Life: Minimum 15-years with the required reliability. The Proximity sensor is to be assembled inside plastic (Noryl, GFN2) enclosure (Radome) and potted with polyurethane potting material.
Future Expectation from the prototype / Technology developed	Indigenous source.

Problem Statement – 41 (BEL)

Organization	BEL
Name	
Problem	To develop Proximity Sensor of Naval Artillery Fuze for
Statement/	activating Fuze firing circuit.
Challenge title	
Challenge domain	Proximity Sensors
Challenge	The Proximity Sensor shall function on proximity against
brief/definition	fast moving high performance aerial targets and sea
	skimming missiles where the characteristics of the target
	are within the following envelope:
	 Speed of the Target: Upto 1.5 Mach.
	 Minimum Attack Height: > 5m above the peak of
	waves.
	Minimum Target Dia: 0.3 metres.
	• Height of Function: 0.5m to 30m above the target.
	• Range of Functioning: 500m from muzzle to Max. Gun
	range.
	The Proximity Sensor:
	Should be mountable inside existing Artillery Proximity
	Fuze cone.
	• Should comprise of RF antenna working on FMCW
	principle with characteristics of beam pattern such
	that the sensitivity at the front is zero and maximum at
	30-50° w.r.t. fore and aft axis.
	Should survive the Naval SRGM Artillery Gun firing
	acceleration of Up to 20,000 g and 20,000 rpm.
	 Should provide Sea clutter rejection.
	Should be immune to external RF noise.
	• Should have no maintenance through its entire life
	cycle.
	 Reliability ≥ 95%

	• Shelf Life: Minimum 10-years with the required reliability.
	 Operating conditions of -20°C to +55°C with Humidity of +95%
	• The Proximity sensor is to be assembled inside plastic (Noryl, GFN2) enclosure (Radome) and potted with polyurethane potting material.
	a for Defense
Future Expectation	Indigenous source.
from the	In Cello
prototype /	
Technology	
developed	

Problem Statement – 42 (BEL)

Organization	BEL
Name	
Problem	To develop Proximity Sensor of Artillery Fuzes for
Challenge title	target
Challenge domain	Proximity Sensors
Challenge	The Proximity sensor:
brief/definition	 Should be mountable inside existing Artillery Proximity Fuze cone.
	 Should be preferably based on FMCW technology.
	 Should activate Fuze firing circuit at height of 10±6M
	from target at all weather conditions and terrain.
	 Should survive the Artillery Gun firing acceleration of
	Up to 20,000 g and 20,000 rpm.
	Should be immune to external RF noise.
	 Should have no maintenance through its entire life
	cycle.
	 Reliability ≥ 95%
	• Shelf Life: Minimum 15-years with the required
	reliability.
	 Operating conditions of -30°C to +55°C upto Altitude of
	6000 M above MSL.
	The Proximity sensor is to be assembled inside plastic (News). (Dedemo) and natted with
	(Noryi, GFN2) enclosure (Radome) and polled with
	polydrethane potting material.
Future Expectation	Cost Reduction along with Indigenisation.
from the	
prototype /	
Technology	
developed	

Problem Statement – 43 (BEL)

Organization	BEL
Name	
Problem	Si Semiconductor device for proximity Fuze.
Statement/	
Challenge title	
Challenge domain	Silicon Semiconductor recipe Design, Device Processing &
	Fabrication at 40 nm Node
Challenge	Si semiconductor design of the semiconductor device
brief/definition	(Laser Diode) for proximity fuze with the following specs:
	Material: Si / InGaAs.
	Laser Diode.
	Power: 4 Watts.
Future Expectation	This Laser diode along with a receiver shall be used as a
from the	proximity fuze.
prototype /	
Technology	
developed	

INDIA STARTUP CHA

Problem Statement – 44 (BEL)

Organization	BEL
Name	Technology development, to detect the bullet location in
Statement/	the target plane for the subsonic weapons, which has
Challenge title	hullet/ammunition velocity less than 450 m/sec at the
Chanenge title	target
	alget. for Defence
Challenge domain	Operator Training Simulator
Challenge	Acoustic sensor based solutions are available to detect
brief/definition	the bullet locations, for the supersonic weapons, which
	has bullet/ammunition velocity 450 m/sec or more at the
	target. Acoustic sensors are unable to detect the shock
	waves generated by bullets of subsonic weapons due to
	low signal strength, as bullet velocity of such ammunition
	is less than 450 m/sec at the target.
	Required technology needs to be developed to resolve
	the above challenge, with following key specifications:
	• Accuracy: 5mm or less within a radius of 8 cm (from
	target centre) and up to 10 mm anywhere on the
	target at wind speed less than 1.5 m/sec.
	• Detection Zone: 80 cm left and right from the target
	centre and 180 cm from the target bottom.
	• Max Rate of Fire: 18 rounds/second.
	• Suitable for stationary target, pop-up target, turning or
	rotation target, as well as for moving target exercises.
Euturo Expostation	1. The technology developed shall be integrated with
future expectation	1. The technology developed shall be integrated with
nom me	automate the existing training methodology of
Technology	weapons training at the existing firing ranges
developed	2 It is aimed to reduce the training duration by training
uevelopeu	z. It is allow to reduce the training duration by training more firers in a specified period of time mannower
	requirement for the conduct of firing and provide
	immediate feedback of the hit as well as miss bullets

Problem Statement – 45 (MDL)

Organization	MDL
Name	
Problem	Indigenization of Bearing Time Device (BTD) which is
Statement/	currently imported.
Challenge title	
Challenge domain	1) Design and Development of the technology for
	Bearing Time Device (BTD).
	2) Development of Prototype for Land Based Trials.
Challenge	• Bearing Time device (BTD) is a 19" touchscreen and its
brief/definition	Graphical User Interface (GUI) running at
	Combat/Weapon Control system and is used to display
	Bearing time for Combat/Weapon Control and Sonar
	Operators. BTD is getting plotting commands from
	both Combat/Weapon Control and Sonar Operators
	through dedicated LAN Network.
	• To indigenously design and develop the Bearing Time
	Device (BTD) for the submarines with minimum 50 %
	indigenized content and should be of latest
	manufacture, conform to the current production
	standard and should have 100% of the defined life at
	the time of delivery.
	• This indigenized Bearing Time Device (BTD) will be
	fitted on-board on successful completion of Land
	based trials for submarine environment.
Future Expectation	The indigenized Bearing Time Device (BTD) to be used on
from the	board Indian Naval Submarines.
prototype /	
Technology	
developed	

Problem Statement – 46 (MDL)

Organization	MDL
Name	
Problem	To develop/manufacture CATALYTIC BURNER which
Statement/	should be of latest manufacture, conform to the current
Challenge title	production standard and should have 100% of the defined
	life at the time of delivery.
	May be fitted on-board on successful completion of Land
	based trials for submarine environment. CATALYTIC
and ^w	BURNER is intended to be used in Submarine.
Challenge domain	CATALYTIC BURNER
Challenge	Catalytic burners are required in submarine to maintain
brief/definition	desirable levels of c <mark>ontaminants through pollution co</mark> ntrol
	application. It executes oxygen generation, CO2 removal
	and burning of contaminants such as carbon monoxide
	and hydrocarbons.
Future Expectation	1. Development of the product including procurement,
from the	fabrication, assembly & integration.
prototype /	2. Finalization of Exploitation Documents viz Technical &
Technology	Operating Instruction Manual, Maintenance Manual,
developed	Installation Testing Manual.
	3. Final Acceptance and Trial Protocols.

UIA STARTUP CHAL

Problem Statement – 47 (MDL)

Organization	MDL
Name	
Problem	To develop/manufacture Prototype Flare Launcher Basket
Statement/	with Protective Cover.
Challenge title	The product should be of latest manufacture, conform to
	the current production standard and should have 100% of
	the defined life at the time of delivery. The product may
	be fitted on-board on successful completion of land based
100	trials for submarine environment. Most diesel submarines
	have 3 baskets with 6 flares.
	In a submarine with diesel-electric propulsion, basket
	launches the flares outside submarine with the help of
	high pressure air. These Flare launcher baskets can be
	operated at both Surface and Snorkel conditions as per
	the submarine requirement.
Challenge Domain	Flare Launcher Basket With Pr <mark>otectiv</mark> e Cover
Challenge	The flare launcher baskets (FLB) are parallelepipeds, the
brief/definition	dimensions of which are:
	Width: 488 mm
	Height: 652 mm
	Depth: 388 mm
1 Un	The FLBs each weigh 68 kg when unloaded.
Future Expectation	1. Design and development of the technology for Flare
from the	Launcher Basket with Protective Cover for submarines.
prototype /	2. Completion and Validation of Design.
Technology	3. Development of Prototype for Land Based Trials.
developed	4. Acceptance Test Protocols for the Flare Launcher
	Basket with Protective Cover for submarines.
	5. Study report on retro fitment on-board conventional
	submarines and final delivery of the product.

Problem Statement – 48 (MDL)

Organization	MDL
Name	
Problem	Indigenisation of Noise Generators for submarines which
Statement/	is currently imported.
Challenge title	
Challenge domain	To indigenously design and develop the Noise generators
	for the submarines with minimum 50 % indigenized
	content.
Challenge	Design and development of Internal Noise Generator
brief/definition	System which is used to modify the acoustic signature
	of a submarine during entering and leaving harbour of
	the foreign port.
	• Design and development of External Acoustic
	Generator system which is used to validate the various
	Sonar sensors fitted onboard Scorpene Submarines.
Future	1. Internal Noise Generator Sy <mark>stem c</mark> an be us <mark>e</mark> d in all the
Expectation from	submarines.
the prototype /	2. External Acoustic Generator system can be used as
Technology	sonar test and trial tools for all the submarines.
developed	

INDIA STARTUP CHIA

Problem Statement – 49 (MDL)

Organization	MDL
Name	
Problem	Indigenization of Sonar Beacon for submarines which is
Statement/	currently imported.
Challenge title	
Challenge domain	To indigenously design and develop the Sonar Beacon for
	the submarines with minimum 50 % indigenized content.
Challenge	Design and development of Sonar Beacon System which is
brief/definition	used to send distress signal/SOS during distress of a
	submarine while at Sea.
Future Expectation	1. Two set of Sonar Beacon System can be used in all the
from the	submarines.
prototype /	2. Sonar Beacon System to be designed in NATO
Technology	frequency so that it can be used for all the submarines.
developed	

INDIA STARTUP CHIP

Problem Statement – 50 (MDL)

Organization	MDL
Name	
Problem	Design and Development Of Windlass, Capstan and Chain
Statement/	Stopper for Submarine.
Challenge title	
Challenge domain	Towing, Mooring and Anchoring System
	The tor Delence c
Challenge	The Windlass, Capstan and Chain stopper is designed for
brief/definition	following function:
	• To pull the submarine by means of synthetic ropes (mooring lines) so that submarine can be berth at one position to enable the crew to move in a safe way on the casing for work like maintenance etc.
	 Anchoring the submarine in a static position by means of an anchor and an anchoring line.
Future Expectation from the	Successful completion of Land based trials for submarine environment. The system is intended to be used in
prototype /	Submarine.
Technology	
developed	

MOIA STARTUP CHIM

Problem Statement – 51 (MDL)

Organization	MDL
Name	
Problem	To develop/manufacture VLF BUOYANT ANTENNA
Statement/	SYSTEM which should be of latest manufacture, conform
Challenge title	to the current production standard and should have 100%
	of the defined life at the time of delivery.
	May be fitted on-board on successful completion of Land
	based trials for submarine environment.
100	VLF BUOYANT ANTENNA SYSTEM is intended to be used
Illin	in Submarine.
Challenge domain	Communication system (Weapon Electronics)
Challenge	Buoyant cable antenna for HF/VLF Reception.
brief/definition	• A VLF/LF/HF buoyant wire antenna system authorizes
	the deployment and retrieval of a buoyant wire
	antenna up to the surface where radio signals can be
	picked up whilst the submarine remains well under
	periscope depth.
	• VLF/LF/HF broadcast reception is possible only with a
E	stable and straight course route according to a keel
	depth / speed ratio. The Submarine can stay still and
	quiet and save energy whilst remaining in
	communication with the shore and/or ships and
	aircraft at any time; but only in reception.
	• VLF system is used for VLF (Very Low Frequency & High
	frequency) reception. It consists of a towed buoyant
	wire antenna (diameter: 16-18 mm; length: 625-650
	m), which is a single core cable terminated by an
	electrode and reinforced by a Kevlar structure
	providing towing resistance.
Future Expectation	Successful completion of Land based trials for submarine
from the	environment. VLF BUOYANT ANTENNA SYSTEM is
prototype /	intended to be used in Submarine.
Technology	
developed	

Problem Statement – 52 (MDL)

Organization	MDL
Name	
Problem	Indigenization of ventilation fans on submarines.
Statement/	
Challenge title	Responsible for intake of fresh air, discharge of foul air
	and air-circulation though out the compartments.
	 Indigenized version should cater to uninterrupted
	functioning of the entire ventilation system.
Challenge domain	To indigenously design and develop the ventilation fans
	for the submarines with minimum 50 % indigenized
	content.
Challenge	Design and development of Ventilation fan which is used
brief/definition	in submarines.
	 Indigenized ventilation fan should be compliant to following specific tests concerned with the submarine environment along with other generic tests applicable: Acoustic discretion. Shock test. Vibration test. Balancing test. Operation in specific submarine environmental conditions.
Future Expectation	1. Less reliability on foreign firms.
from the	2. No operational/performance deviation from
prototype /	submarine specifications.
Technology	3. Reduced dimensions.
developed	4. Enhanced performance and monitoring system.

Problem Statement – 53 (BDL)

Organization	BDL
Name	
Problem	Indigenization Of Monolithic/Hybrid MWIR Jt Focal Plane
Statement/	Array (MWIT FPA).
Challenge title	
Challenge domain	Format 384 x 288 pixels with variable integration time
Challenge	 Signal integrity/fidelity/compact ROIC.
brief/definition	 Small form factor /Power to Weight ratio.
all b	Thermal stability.
	Cooling efficiency.
Future Expectation	Huge & continuous requirement in automatic target
from the	detection and recognition systems/Passive imaging
prototype /	systems in Missiles.
Technology	
developed	

INDIA STARTUP CHIA

Problem Statement – 54 (BDL)

BDL
Indigenous development of Night Vision Goggle
Compatible Display Pane.
Photonics/Applied Optics
tor Derence c
Integrated Night Vision Goggle compatible Display Panel
consists:
Display front Panel (Mechanical)
Optical filter window
Illumination PCB with LEDs
Brief Technical specifications of Night Vision Goggle
compatible Display Panel:
• Filter substrate: Polymethyl Methacrylate Sheet
(colorless sheet), 1.7 mm thickness.
• Surface Quality (Scratch–Dig): 80-50.
• Filter windows with optical filter transmitting the
source radiation between 660 nm-950 nm.
NVIS compatible ring filter for LEDs.
• The illumination display (electronic displays of
monochromatic) should have radiance not greater
than 0.5 foot-lamberts as per MIL STD-3009.
• Background of the front face of the display is to be
finished with black matt lacquer to be applied over
complete panel in accordance with AS7786.
• Integral illumination should meet the class A Night
Vision Imaging System NVIS compatible lighting
requirements of MIL-L-85762 green A.
• The overlay has a recessed PCB with NVS filtered
filament lamp/LEDs, with flying leads for the power
supply
 Input supply voltage: 5V AC. 400Hz or 5V DC. 1A.

	• Applicable standards: MIL-STD-3009 , MIL-STD-810 F,
	MIL-L-85762, SAE AS7788, TYPE V, Class 1, NVIS Green
	Α.
Future Expectation	The prototype developed will be used in BDL's product for
from the	the current and future requirement which is recurring in
prototype /	nature.
Technology	
developed	ter Dofes

INDIA STARTUP CHA

EXCELLE

ĽŖ

Problem Statement – 55 (BEML)

Organization	BEML
Name	
Problem	Indigenous design and development of Obstacle
Statement/	Deflection and Derailment Detection device (ODD).
Challenge title	
Challenge domain	Sensor integration to mechanical structure, fail safe and
	communication to TCMS
Challanaa	Perkeraunde CRU
Challenge	Background:
brief/definition	Functional Requirement-
	ODD shall detect obstacles of specific condition on
	the track.
	ODD shall remove small obstacles from track.
	 In the case of derailment of Train, ODD shall detect
	the derailment.
	 ODD shall provide distinct signal to TCMS for obstacle
	and derailment detection.
	Challenge:
	 Using link structure, rectangle-shaped rotating pivot
- 1	will pass sensing area of non-contact detecting
	sensors by rotating of detection bar.
5/12	 Non-contact detecting sensors installed in the
	detecting sensor box will be activated by sensing
	movement of the nivot
	• ODD system is working on machanical principle. Using
	• ODD system is working on mechanical principle. Using
	SIL level 2 certified fail-safe inductive sensor,
	reliability of system has to be ensured and system
	failure by malfunction of sensors is excluded.
	 Detection bar shall be V-shaped to remove the
	obstacles to the outside of track.

Future Expectation	The existing and upcoming UTO (Driverless trains)
from the	projects are seeking ODD as a mandatory requirement.
prototype /	With BEML experience and capabilities, it is proposed to
Technology	take up design and development of Obstacle deflection
developed	and derailment detection device as a R&D project.

Problem Statement – 56 (BEML)

Organization	BEML
Name	
Problem	Design of multi axle and multi-mode steering system for
Statement/	HMV 8x8 and HMV 12x12 vehicle.
Challenge title	
Challenge domain	Vehicle Dynamics, Design steering components and CAE
	Simulation for performance & stability
Challenge	Background:
brief/definition	HMV 8x8 and HMV 12x12 vehicles are used for
	transporting large and sensitive payloads on various
	terrains where trailers cannot be used. Being a very long
	vehicle, for good manoeuvrability these kind of vehicles
	require multi axles steering capabilities including the rear
	axle steering systems with multiple models like front 2
	and rear two axle steering, crab steering and all wheel
	steering.
	Challenge:
	• Preliminary design calculation to arrive at the steering
	geometry and kinematic design.
- Fri	 Determine Front and rear wheel cut angles achievable.
SU.	 Ensure design meets the steering effort and dynamic performance requirements.
	 Determine and finalise the hydraulic circuit and
	electronic control circuit required for meeting the
	system requirements.
	Carry out ADAMS, AMESim, FEA simulations based on
	design methodology required for design verification.
	 Sizing and optimising of linkage components.
Future Expectation	The proto of proposed design shall be developed and
from the	engineered on the vehicle for performance monitoring
prototype /	and proto evaluation. After design completion and proto
Technology	validation of the design, the same will be extended for
developed	BEML HMV 8x8 and 12x12 vehicles.

Problem Statement – 57 (GRSE)

Organization	GRSE
Name	
Problem	Heavy Duty Non-Slip Epoxy Wearing Surface For Modular
Statement/	Steel Bridge Decks.
Challenge title	
Challenge domain	Wearing Coat / Anti-Skid Surface / Non-Slip Epoxy
	Coating (OI DEIENCE C.
Challenge	Application of Non-Slip Epoxy Surface on top surface of
brief/definition	Steel Decks to achieve antiskid decks instead of
	chequered plate which wears-out after sometime due to
	cyclic loading and is very difficult to replace /
	maintenance of sam <mark>e.</mark>
	In view of further in <mark>crease of deck lif</mark> e and easy
	maintenance of dec <mark>ks surface alternat</mark> e solution may be
	proposed by vendor.
	In this respect following features may be discussed with
	vendor:
	• GRSE requires heavy performance anti-skid surface on
	top of the galvanized / OG painted chequered plate
	which is to be designed with non-slip epoxy surface
	using course gravel or pebble finish with epoxy glue
	for min 40 years life, to create positive grip system
	and reduce slippage on metallic surfaces against
	vehicle loading condition.
	 Epoxy to be done on top of galvanized / OG
	chequered plate of decks for Modular Steel Bridges
	before dispatch to customer site. Also, it should be
	feasible for maintenance at site.
	Non-Slip Skid proofer High Performance Epoxy
	Coating as should be 100% Solids with less weight
	effect on bridge and Heavy Duty Non-Slip Coating
	should provide a very aggressive surface for
	applications in heavy raining / wet / slippery / ice fall
	areas to prevent slips from heavy vehicle.

	 Product should be used for heavy road traffic like 100 MT Truck and incorporates Epoxy Resins to provide Toughness, excellent Chemical resistance, Wear, Corrosion resistance with excellent Anti-Slip resistant performance recommended for Skid proofing vehicle road areas.
Future Expectation	Technology development for Modular Steel Bridges.
from the	For Defense
prototype /	sinfigible derenice Fre
Technology	Mon Cell
developed	

INDIA STARTUP CHA

Problem Statement – 58 (Defence Space Agency)

Organization	Defence Space Agency
Name	
Problem	Imagery data fusion for Optical and Radar data sources.
Statement/	
Challenge title	
Challenge	As a component of DISC-8 Challenge 4: "Integration of
brief/definition	Optical and Radar Sensors into a network with AI based
	Analytics", It is proposed to develop a multi format
100	imagery data fusion platform along with AI analytical tool
	which is capable of integrating the data received from
	multiple optical and radar sensors into a unified data set.
	The AI tool will anal <mark>yse this uni</mark> fied data set to provide
	reliable space situational awareness.

Problem Statement – 59 (Defence Space Agency)

Organization	Defence Space Agency
Name	
Problem	Geo-spatial Artificial Intelligence based Multi-Sensor
Statement/	(Optical/Radar) Siting Simulator.
Challenge title	
Challenge	As a component of DISC-8 Challenge 4: "Integration of
brief/definition	Optical and Radar Sensors into a network with AI based
	Analytics", a sensor Equipment Siting Simulator is
100	proposed to be developed which uses Geo-AI tool for
	easy and efficient siting of optical and radar equipment
	in our areas of operations. This would greatly assist in
	faster deployment of future sensors for optimal
	equipment perform <mark>ance.</mark>

Problem Statement – 60 (BRO)

Problem	Recce & Survey Drone to provide a soft strata heat map
Statement	of the different sediment types and bedrock along with
	likely slide-prone zones to enable more accurate survey
	and planning of road alignments.
Challenge Domain	Drone based geological survey
Challenge Brief	BBO is involved in construction of roads on green field
endinenge strei	alignments. During initial survey in thick vegetation, it is
Un.	difficult to identify the rock strata and slide-prone area.
	A drone based application to ascertain geological data
	and slide-prone areas will enable more accurate
	assessment of the requirement at the DPR stage.
Future	Drone based geological survey will become an inherent
Expectation from	part of the DPR process and will be used extensively
the Proto <mark>t</mark> ype/	during selection of alignment and avoiding hard rock &
Technology	slide-prone stre <mark>tches t</mark> o enabl <mark>e faster</mark> construction.
Developed	

INDIA STARTUP CHA

Problem Statement – 61 (BRO)

Problem		Concreting in extreme low temperatures.
Statemen	t	
Challenge	Domain	Road construction
Challenge	Brief	Concreting is not recommended to be carried out in
		ambient temperatures below 10° C in order to ensure
		predictable concrete behaviour.
		*inns in boicing Exa
	10	In extremely cold region like Ladakh, the ambient
		temperature during the day are above 10° C only from
		Apr to Oct. Thus working season is curtailed and as a
		result infrastructure projects take double the time to be
		executed.
		These restrictions not only enhance the overall cost of
		work but also delay time bound execution of
		infrastructure projects in border areas.
Future		Undertake concreting work in sub zero temperatures.
Expectatio	on from	
the Proto	type/	
Technolog	3 y	
Develope	d	

MOIA STARTUP CHAP

Problem Statement – 62 (BRO)

Problem	Develop a self healing/ repairing road for areas affected
Statement	by heavy rainfall/ slow.
Challenge Domain	Road construction
Challenge Brief	BRO constructs roads in remote areas of the country.
	These provide connectivity not only to the Indian Armed
	Forces, but also to locals and tourists in the region.
10.	
	Most of these remote areas either receives heavy snow
	(in Northern States) or heavy rains (Eastern States). The
	excessive snow/ rains tend to damage the surface of the
	roads much earlier t <mark>han their des</mark> ign lifecycle.
	Further, speedy repair of all roads at all times becomes a
	challenge with limited resources available on ground.
	Hence, there is a need to develop a material of road
	construction with which the roads would self heal
	themselves, when small cracks appear, well before they
	develop into pot holes.
Future	Undertake concreting work in sub zero temperatures.
Expectation from	
the Prototype/	
Technology	
Developed	
	VIA PTANTILY V
	TA STARIU

Problem Statement – 63 (BRO)

Problem	Design a route guidance and navigation system for
Statement	recognition of alignment of road in valley side by leading
	dozers in regions with heavy snowfall and snow depth of
	3 m to 4 m above roads surface.
Challenge Domain	Snow clearance on mountain passes
Challenge Brief	Difficulty in ascertaining the correct road alignment
	during the snow clearance operations on snow covered
Inno.	mountain passes with steep cross slopes.
Future	Technology developed should also be utilized for
Expectation from	formation cutting on green field alignments to maintain
the Prototype/	correct gradient, cro <mark>ss slopes cambe</mark> r and super elevation
Technology	using three dimensional coordinates.
Developed	

